On Numerical Schemes for Solving a Nonlinear Pde with a Mean Curvature Term on Triangular
نویسندگان
چکیده
In this paper, we propose two numerical schemes for solving a nonlinear level set equation on unstructured triangulations. The consistency and the stability of these schemes are shown. In addition, we show how to compute nodewise fisrt and second order derivatives. An application example of curve construction using these approximations is provided to demonstrate their accuracy. Résumé. Dans ce papier, nous proposons deux schémas numériques pour résoudre une équation non linéaire de type ligne de niveaux sur des maillages triangulaires. Nous montrons, de plus, comment calculer les dérivées premières et secondes aux nœuds du maillage. On établit la consistance et la stabilité de ces deux schémas et on fournit un exemple d’application à la construction d’une courbe utilisant ces approximations, pour démontrer leur efficacité. 1991 Mathematics Subject Classification. 65N06, 65N12, 65N22. The dates will be set by the publisher.
منابع مشابه
Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009